Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Gen Virol ; 105(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38329395

RESUMO

Infections with persistent or latent viruses alter host immune homeostasis and have potential to affect the outcome of concomitant acute viral infections such as influenza A virus (IAV). Gammaherpesviruses establish life-long infections and require an on-going immune response to control reactivation. We have used a murine model of co-infection to investigate the response to IAV infection in mice latently infected with the gammaherpesvirus MHV-68. Over the course of infection, latently infected BALB/c mice showed less weight loss, clinical signs, pulmonary cellular infiltration and expression of inflammatory mediators than naïve mice infected with IAV and had significantly more activated CD8+ T cells in the lungs. Four days after IAV infection, virus spread in the lungs of latently infected animals was significantly lower than in naïve animals. By 7 days after IAV infection latently infected lungs express elevated levels of cytokines and chemokines indicating they are primed to respond to the secondary infection. Investigation at an early time point showed that 24 h after IAV infection co-infected animals had higher expression of IFNß and Ddx58 (RIG-I) and a range of ISGs than mice infected with IAV alone suggesting that the type I IFN response plays a role in the protective effect. This effect was mouse strain dependent and did not occur in 129/Sv/Ev mice. These results offer insight into innate immune mechanisms that could be utilized to protect against IAV infection and highlight on-going and persistent viral infections as a significant factor impacting the severity of acute respiratory infections.


Assuntos
Coinfecção , Gammaherpesvirinae , Vírus da Influenza A , Influenza Humana , Interferon Tipo I , Animais , Camundongos , Humanos , Linfócitos T CD8-Positivos , Camundongos Endogâmicos BALB C
2.
Prev Vet Med ; 212: 105842, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36706557

RESUMO

Many small ruminants infected with foot-and-mouth disease (FMD) remain asymptomatic, with the capacity to promote silent viral spread within domestic and wildlife species. However, little is known about the epidemiological role played by small ruminants in FMD. In particular, there are few studies that examine FMD seroprevalence, spatial patterns and risk factors for exposure in small ruminants. A cross-sectional study was conducted in northern Nigeria (Bauchi, Kaduna, and Plateau States) to determine the true seroprevalence of FMD in backyard small ruminants, identify factors associated with FMD seroconversion at animal and household levels, and identify spatial patterns for FMD virus exposure. Data on animal (n = 1800) and household (n = 300) characteristics were collected using a standardised questionnaire. Sera samples from 1800 small ruminants were tested for antibodies against non-structural proteins of FMD virus. True seroprevalence was estimated stochastically to account for variability and uncertainty in the test sensitivity and specificity previously reported. Risk factors for FMD seropositivity were identified at animal and household levels and spatial patterns were determined. The overall true seroprevalence for FMD virus, in the small ruminant population tested, was estimated to be 10.2 % (95 % Credible Interval (CrI) 0.0-19.0), while State-level estimates were 17.3 % (95 % CrI 0.0-25.8) for Kaduna, 6.9 % (95% CrI 0.0-15.8) for Bauchi, and 3.6 % (95 % CrI 0.0-12.6) for Plateau. State and species were the main risk factors identified at animal level, with interaction detected between them. Compared to goats in Plateau, the odds of testing positive were higher for goats in Bauchi (Odds Ratio (OR)= 1.83, 95 % CI 1.13-2.97, p = 0.01) and Kaduna (OR=2.97, 95 % CI 1.89-4.67, p < 0.001), as well as for sheep in Plateau (OR=3.78, 95 % CI 2.08-6.87, p < 0.001), Bauchi (OR=1.61, 95 % CI 0.91-2.84, p = 0.10), and Kaduna (OR=3.11, 95 % CI 1.61-6.01, p = 0.001). Households located in Kaduna were more likely to have a higher number of seropositive SR compared to those in Plateau (Prevalence Ratio (PR)= 1.75, 95 % CI 1.30-2.36, p < 0.001), and households keeping sheep flocks were more likely to be seropositive (from 1 to 10 sheep: PR=1.39, 95 % CI 1.05-1.82, p = 0.02; more than 10 sheep: PR=1.55, 95 % CI 1.12-2.15, p = 0.008) compared to those that did not keep sheep. A hot-spot was detected in Kaduna, and a cold-spot in Plateau. These results reveal that small ruminants had been recently exposed to FMD virus with spatial heterogeneity across the study area.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Doenças das Cabras , Doenças dos Ovinos , Ovinos , Animais , Febre Aftosa/epidemiologia , Estudos Soroepidemiológicos , Nigéria/epidemiologia , Estudos Transversais , Ensaio de Imunoadsorção Enzimática/veterinária , Doenças das Cabras/epidemiologia , Ruminantes , Cabras , Fatores de Risco
3.
Front Immunol ; 13: 1051008, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518761

RESUMO

Lumpy skin disease virus (LSDV) causes severe disease in cattle and water buffalo and is transmitted by hematophagous arthropod vectors. Detailed information of the adaptive and innate immune response to LSDV is limited, hampering the development of tools to control the disease. This study provides an in-depth analysis of the immune responses of calves experimentally inoculated with LSDV via either needle-inoculation or arthropod-inoculation using virus-positive Stomoxys calcitrans and Aedes aegypti vectors. Seven out of seventeen needle-inoculated calves (41%) developed clinical disease characterised by multifocal necrotic cutaneous nodules. In comparison 8/10 (80%) of the arthropod-inoculated calves developed clinical disease. A variable LSDV-specific IFN-γ immune response was detected in the needle-inoculated calves from 5 days post inoculation (dpi) onwards, with no difference between clinical calves (developed cutaneous lesions) and nonclinical calves (did not develop cutaneous lesions). In contrast a robust and uniform cell-mediated immune response was detected in all eight clinical arthropod-inoculated calves, with little response detected in the two nonclinical arthropod-inoculated calves. Neutralising antibodies against LSDV were detected in all inoculated cattle from 5-7 dpi. Comparison of the production of anti-LSDV IgM and IgG antibodies revealed no difference between clinical and nonclinical needle-inoculated calves, however a strong IgM response was evident in the nonclinical arthropod-inoculated calves but absent in the clinical arthropod-inoculated calves. This suggests that early IgM production is a correlate of protection in LSD. This study presents the first evidence of differences in the immune response between clinical and nonclinical cattle and highlights the importance of using a relevant transmission model when studying LSD.


Assuntos
Doença Nodular Cutânea , Vírus da Doença Nodular Cutânea , Bovinos , Animais , Vírus da Doença Nodular Cutânea/fisiologia , Doença Nodular Cutânea/prevenção & controle , Mosquitos Vetores , Imunidade Celular , Búfalos , Imunoglobulina M
4.
Euro Surveill ; 27(39)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36177868

RESUMO

We report results of surveillance between June and mid-September 2022 of pet animals living in households of confirmed human monkeypox (MPX) cases. Since surveillance commenced, 154 animals from 40 households with a confirmed human MPX case were reported to the United Kingdom Animal and Plant Health Agency. No animals with clinical signs of MPX were identified. While a risk of transmission exists to pets from owners with a confirmed MPX virus infection, we assess this risk to be low.


Assuntos
Surtos de Doenças/veterinária , Humanos , /epidemiologia , Vírus da Varíola dos Macacos , Reino Unido/epidemiologia
5.
J Virol ; 96(15): e0075122, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35867566

RESUMO

Lumpy skin disease virus (LSDV) is a poxvirus that causes severe systemic disease in cattle and is spread by mechanical arthropod-borne transmission. This study quantified the acquisition and retention of LSDV by four species of Diptera (Stomoxys calcitrans, Aedes aegypti, Culex quinquefasciatus, and Culicoides nubeculosus) from cutaneous lesions, normal skin, and blood from a clinically affected animal. The acquisition and retention of LSDV by Ae. aegypti from an artificial membrane feeding system was also examined. Mathematical models of the data were generated to identify the parameters which influence insect acquisition and retention of LSDV. For all four insect species, the probability of acquiring LSDV was substantially greater when feeding on a lesion compared with feeding on normal skin or blood from a clinically affected animal. After feeding on a skin lesion LSDV was retained on the proboscis for a similar length of time (around 9 days) for all four species and for a shorter time in the rest of the body, ranging from 2.2 to 6.4 days. Acquisition and retention of LSDV by Ae. aegypti after feeding on an artificial membrane feeding system that contained a high titer of LSDV was comparable to feeding on a skin lesion on a clinically affected animal, supporting the use of this laboratory model as a replacement for some animal studies. This work reveals that the cutaneous lesions of LSD provide the high-titer source required for acquisition of the virus by insects, thereby enabling the mechanical vector-borne transmission. IMPORTANCE Lumpy skin disease virus (LSDV) is a high consequence pathogen of cattle that is rapidly expanding its geographical boundaries into new regions such as Europe and Asia. This expansion is promoted by the mechanical transmission of the virus via hematogenous arthropods. This study quantifies the acquisition and retention of LSDV by four species of blood-feeding insects and reveals that the cutaneous lesions of LSD provide the high titer virus source necessary for virus acquisition by the insects. An artificial membrane feeding system containing a high titer of LSDV was shown to be comparable to a skin lesion on a clinically affected animal when used as a virus source. This promotes the use of these laboratory-based systems as replacements for some animal studies. Overall, this work advances our understanding of the mechanical vector-borne transmission of LSDV and provides evidence to support the design of more effective disease control programmes.


Assuntos
Sangue , Dípteros , Comportamento Alimentar , Insetos Vetores , Doença Nodular Cutânea , Vírus da Doença Nodular Cutânea , Aedes/anatomia & histologia , Aedes/virologia , Animais , Bovinos/virologia , Ceratopogonidae/anatomia & histologia , Ceratopogonidae/virologia , Culex/anatomia & histologia , Culex/virologia , Dípteros/anatomia & histologia , Dípteros/fisiologia , Dípteros/virologia , Insetos Vetores/anatomia & histologia , Insetos Vetores/fisiologia , Insetos Vetores/virologia , Doença Nodular Cutânea/virologia , Vírus da Doença Nodular Cutânea/isolamento & purificação , Vírus da Doença Nodular Cutânea/fisiologia , Membranas Artificiais , Muscidae/anatomia & histologia , Muscidae/virologia , Fatores de Tempo
6.
BMC Biol ; 20(1): 14, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35027054

RESUMO

BACKGROUND: Infectious diseases of farmed and wild animals pose a recurrent threat to food security and human health. The macrophage, a key component of the innate immune system, is the first line of defence against many infectious agents and plays a major role in shaping the adaptive immune response. However, this phagocyte is a target and host for many pathogens. Understanding the molecular basis of interactions between macrophages and pathogens is therefore crucial for the development of effective strategies to combat important infectious diseases. RESULTS: We explored how porcine pluripotent stem cells (PSCs) can provide a limitless in vitro supply of genetically and experimentally tractable macrophages. Porcine PSC-derived macrophages (PSCdMs) exhibited molecular and functional characteristics of ex vivo primary macrophages and were productively infected by pig pathogens, including porcine reproductive and respiratory syndrome virus (PRRSV) and African swine fever virus (ASFV), two of the most economically important and devastating viruses in pig farming. Moreover, porcine PSCdMs were readily amenable to genetic modification by CRISPR/Cas9 gene editing applied either in parental stem cells or directly in the macrophages by lentiviral vector transduction. CONCLUSIONS: We show that porcine PSCdMs exhibit key macrophage characteristics, including infection by a range of commercially relevant pig pathogens. In addition, genetic engineering of PSCs and PSCdMs affords new opportunities for functional analysis of macrophage biology in an important livestock species. PSCs and differentiated derivatives should therefore represent a useful and ethical experimental platform to investigate the genetic and molecular basis of host-pathogen interactions in pigs, and also have wider applications in livestock.


Assuntos
Vírus da Febre Suína Africana , Doenças Transmissíveis , Vírus da Febre Suína Africana/genética , Animais , Interações Hospedeiro-Patógeno/genética , Macrófagos , Células-Tronco , Suínos
7.
Prev Vet Med ; 198: 105503, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34808578

RESUMO

Sheeppox and goatpox (SGP) are important transboundary diseases, endemic in Nigeria, causing severe clinical manifestations, impacting production, and resulting in economic losses. Vaccination is an effective control measure against SGP in endemic countries but is not currently implemented in Nigeria. This study aimed to estimate SGP financial impact and assess economic viability of SGP vaccination at the herd and regional level under different scenarios in Northern Nigeria. Integrated stochastic production and economic herd models were developed for transhumance and sedentary herds. Models were run for two disease scenarios (severely and slightly affected) and with and without vaccination, with data parameterisation from literature estimates, field survey and authors' experience. Herd-level net financial impact of the disease and its vaccination was assessed using gross margin (GM) and partial budget analyses. These were then used to assess regional financial impact of disease and profitability of a 3-year vaccination programme using a cost-benefit analysis. The regional-analysis was performed under 0 %, 50 % and 100 % government subsidy scenarios; as a standalone programme or in combination with other existing vaccination programmes; and for risk-based and non-risk-based intervention. Median SGP losses per reproductive female were £27 (90 % CI: £31-£22), and £5 (90 % CI: £7-£3), in sedentary, and £30 (90 % CI: £41-21), and £7 (90 % CI: £10-£3), in transhumance herds, for severely and slightly affected scenarios respectively. Selling animals at a reduced price, selling fewer young animals, and reduced value of affected animals remaining in the herd were the greatest contributors to farmer's SGP costs. SGP-affected herds realised a GM reduction of up to 121 % in sedentary and 138 % in transhumance. Median estimated regional SGP cost exceeded £24 million. Herd-level median benefits of vaccination per reproductive female were £23.76 (90 % CI: £19.28-£28.61), and £4.01 (90 % CI: £2.36-£6.31), in sedentary, and £26.85 (90 % CI: £17.99-£37.02) and £7.45 (90 % CI: £3.47-£15.14) in transhumance herds, in severely and slightly affected scenarios, respectively. Median benefit: cost ratio (BCR) for severely affected herds at 50% subsidies was 6.62 (90% CI: 5.30-8.90) for sedentary, and 5.14 (90% CI: 3.31-13.81) for transhumance herds. The regional SGP vaccination standalone programme BCR: 7-27, regional SGP vaccination with existing vaccination programme BCR: 7-228 and vaccinating high-risk areas BCR: 19-439 were found to be economically viable for all subsidy levels explored. Vaccinating low-risk areas only realised benefits with 100 % of government subsidies. This study further increases understanding of SGP's impact within Northern Nigeria and demonstrates vaccination is an economically viable control strategy at the herd-level and also regionally, depending on the strategy and government subsidy levels considered.


Assuntos
Fazendeiros , Infecções por Poxviridae , Vacinação , Animais , Análise Custo-Benefício , Feminino , Cabras , Humanos , Nigéria , Infecções por Poxviridae/prevenção & controle , Infecções por Poxviridae/veterinária , Ovinos , Vacinação/veterinária
8.
Transbound Emerg Dis ; 69(4): 1837-1846, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34033248

RESUMO

Sheeppox is a transboundary disease of small ruminants caused by infection with the capripoxvirus sheeppox virus. Sheeppox is found in Africa, the Middle East and Asia and is characterized by fever, multifocal cutaneous raised lesions and death. Vaccination with live attenuated capripoxvirus (CPPV) strains is an effective and widely used strategy to contol sheeppox outbreaks; however, there are few reports of post-vaccination field surveillance studies. This study used a commercially available enzyme-linked immunosorbent assay (ELISA) to examine quantitative and temporal features of the humoral response of sheep vaccinated with a live-attenuated CPPV strain in Mongolia. Four hundred samples were tested using the ELISA commercial kit, and a subset of 45 samples were also tested with a virus neutralization test (VNT). There was substantial agreement between the VNT and ELISA tests. Antibodies to CPPV were detected between 40 and 262 days post-vaccination. There was no significant difference between serological status (positive/negative) and sex or age; however, an inverse correlation was found between the length of time since vaccination and serological status. Animals between 90 and 180 days post-vaccination were more likely to be positive than animals greater than 180 days post-vaccination. Our results show that a commercial CPPV ELISA kit is a robust and reliable assay for post-CPPV vaccination surveillance in resource-restricted settings and provide temporal parameters to be considered when planning sheeppox post-vaccination monitoring programmes.


Assuntos
Capripoxvirus , Infecções por Poxviridae , Doenças dos Ovinos , Animais , Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática/métodos , Ensaio de Imunoadsorção Enzimática/veterinária , Imunidade Humoral , Infecções por Poxviridae/epidemiologia , Infecções por Poxviridae/prevenção & controle , Infecções por Poxviridae/veterinária , Sensibilidade e Especificidade , Ovinos , Doenças dos Ovinos/epidemiologia
9.
Transbound Emerg Dis ; 69(4): e336-e343, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34448540

RESUMO

Lumpy skin disease virus (LSDV) is an emerging poxviral pathogen of cattle that is currently spreading throughout Asia. The disease situation is of high importance for farmers and policy makers in Asia. In October 2020, feral cattle in Hong Kong developed multi-focal cutaneous nodules consistent with lumpy skin disease (LSD). Gross and histological pathology further supported the diagnosis and samples were sent to the OIE Reference Laboratory at The Pirbright Institute for confirmatory testing. LSDV was detected using quantitative polymerase chain reaction (qPCR) and additional molecular analyses. This is the first report of LSD in Hong Kong. Whole genome sequencing (WGS) of the strain LSDV/Hong Kong/2020 and phylogenetic analysis were carried out in order to identify connections to previous outbreaks of LSD, and better understand the drivers of LSDV emergence. Analysis of the 90 core poxvirus genes revealed LSDV/Hong Kong/2020 was a novel strain most closely related to the live-attenuated Neethling vaccine strains of LSDV and more distantly related to wildtype LSDV isolates from Africa, the Middle East and Europe. Analysis of the more variable regions located towards the termini of the poxvirus genome revealed genes in LSDV/Hong Kong/2020 with different patterns of grouping when compared to previously published wildtype and vaccine strains of LSDV. This work reveals that the LSD outbreak in Hong Kong in 2020 was caused by a different strain of LSDV than the LSD epidemic in the Middle East and Europe in 2015-2018. The use of WGS is highly recommended when investigating LSDV disease outbreaks.


Assuntos
Doenças dos Bovinos , Doença Nodular Cutânea , Vírus da Doença Nodular Cutânea , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Surtos de Doenças/veterinária , Hong Kong/epidemiologia , Filogenia , Vacinas Atenuadas
10.
Prev Vet Med ; 196: 105473, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34479042

RESUMO

Sheeppox and goatpox (SGP) are transboundary, highly contagious diseases affecting sheep and goats with characteristic clinical signs. SGP affect populations of small ruminants in Africa, Asia and the Middle East and, as a result, threaten farmers' livelihoods. Despite their importance, studies looking at factors that increase the risk of sheeppox-virus (SPPV) and goatpox-virus (GTPV) exposure and infection are limited. A cross-sectional study was conducted in three states of Northern Nigeria (Bauchi, Kaduna and Plateau) to determine the sero-prevalence and spatial patterns of SGP, and identify risk factors for SPPV/GTPV exposure at animal and household level. Sera samples were collected from 1,800 small ruminants from 300 households. Data on putative risk factors were collected using a standardised questionnaire. Twenty-nine small ruminants were sero-positive to SGP - apparent weighted sero-prevalence 2.0 %; 95 % C.I. 1.1-.3.0 %. Sero-positive animals came from 19 (6.3 %) households. Analysis of the questionnaire showed that a fifth (20.3 %) of farmers claimed to have experienced SGP outbreaks previously in their flocks, with 33 (1.8 %) of the individual animals sampled in this study reported to have had clinical signs. At animal level, the odds of being sero-positive were higher in older animals (>24months; OR = 8.0, p = 0.008 vs ≤24 months) and small ruminants with a history of clinical SGP (OR = 16.9, p = 0.01). Bringing new small ruminants into the household and having a history of SGP in the flock were the main factors identified at household level. Households were less likely to be sero-positive if the time between bringing animals into the household and sampling was over a year (PR = 0.31, p = 0.05), while households with a history of SGP were more likely to be sero-positive regardless of the timeframe. Important spatial heterogeneity was found. The Bayes smooth rate ranged from 0.06 to 4.10 % across local government areas (LGA), with LGA in the north-east or north-west of the study area identified as hot-spots for SGP exposure. Results from this study shed new light on the understanding of SGP epidemiology and provide key inputs to design risk-based surveillance and intervention programmes in the area.


Assuntos
Doenças das Cabras , Infecções por Poxviridae/epidemiologia , Doenças dos Ovinos , Animais , Teorema de Bayes , Capripoxvirus , Estudos Transversais , Doenças das Cabras/epidemiologia , Doenças das Cabras/virologia , Cabras , Nigéria/epidemiologia , Prevalência , Ovinos , Doenças dos Ovinos/epidemiologia , Doenças dos Ovinos/virologia
11.
J Virol ; 95(9)2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33568514

RESUMO

Lumpy skin disease virus (LSDV) is a vector-transmitted poxvirus that causes disease in cattle. Vector species involved in LSDV transmission and their ability to acquire and transmit the virus are poorly characterized. Using a highly representative bovine experimental model of lumpy skin disease, we fed four model vector species (Aedes aegypti, Culex quinquefasciatus, Stomoxys calcitrans, and Culicoides nubeculosus) on LSDV-inoculated cattle in order to examine their acquisition and retention of LSDV. Subclinical disease was a more common outcome than clinical disease in the inoculated cattle. Importantly, the probability of vectors acquiring LSDV from a subclinical animal (0.006) was very low compared with that from a clinical animal (0.23), meaning an insect feeding on a subclinical animal was 97% less likely to acquire LSDV than one feeding on a clinical animal. All four potential vector species studied acquired LSDV from the host at a similar rate, but Aedes aegypti and Stomoxys calcitrans retained the virus for a longer time, up to 8 days. There was no evidence of virus replication in the vector, consistent with mechanical rather than biological transmission. The parameters obtained in this study were combined with data from studies of LSDV transmission and vector life history parameters to determine the basic reproduction number of LSDV in cattle mediated by each of the model species. This reproduction number was highest for Stomoxys calcitrans (19.1), followed by C. nubeculosus (7.1) and Ae. aegypti (2.4), indicating that these three species are potentially efficient transmitters of LSDV; this information can be used to inform LSD control programs.IMPORTANCE Lumpy skin disease virus (LSDV) causes a severe systemic disease characterized by cutaneous nodules in cattle. LSDV is a rapidly emerging pathogen, having spread since 2012 into Europe and Russia and across Asia. The vector-borne nature of LSDV transmission is believed to have promoted this rapid geographic spread of the virus; however, a lack of quantitative evidence about LSDV transmission has hampered effective control of the disease during the current epidemic. Our research shows subclinical cattle play little part in virus transmission relative to clinical cattle and reveals a low probability of virus acquisition by insects at the preclinical stage. We have also calculated the reproductive number of different insect species, therefore identifying efficient transmitters of LSDV. This information is of utmost importance, as it will help to define epidemiological control measures during LSDV epidemics and of particular consequence in resource-poor regions where LSD vaccination may be less than adequate.


Assuntos
Insetos Vetores , Doença Nodular Cutânea/transmissão , Vírus da Doença Nodular Cutânea/fisiologia , Animais , Bovinos , Insetos Vetores/fisiologia , Insetos Vetores/virologia , Masculino , Replicação Viral
12.
J Virol ; 94(21)2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796064

RESUMO

African swine fever virus (ASFV) causes a lethal hemorrhagic disease of domestic pigs, against which no vaccine is available. ASFV has a large, double-stranded DNA genome that encodes over 150 proteins. Replication takes place predominantly in the cytoplasm of the cell and involves complex interactions with host cellular components, including small noncoding RNAs (sncRNAs). A number of DNA viruses are known to manipulate sncRNA either by encoding their own or disrupting host sncRNA. To investigate the interplay between ASFV and sncRNAs, a study of host and viral small RNAs extracted from ASFV-infected primary porcine macrophages (PAMs) was undertaken. We discovered that ASFV infection had only a modest effect on host miRNAs, with only 6 miRNAs differentially expressed during infection. The data also revealed 3 potential novel small RNAs encoded by ASFV, ASFVsRNA1-3. Further investigation of ASFVsRNA2 detected it in lymphoid tissue from pigs with ASF. Overexpression of ASFVsRNA2 led to an up to 1-log reduction in ASFV growth, indicating that ASFV utilizes a virus-encoded small RNA to disrupt its own replication.IMPORTANCE African swine fever (ASF) poses a major threat to pig populations and food security worldwide. The disease is endemic to Africa and Eastern Europe and is rapidly emerging into Asia, where it has led to the deaths of millions of pigs in the last 12 months. The development of safe and effective vaccines to protect pigs against ASF has been hindered by lack of understanding of the complex interactions between ASFV and the host cell. We focused our work on characterizing the interactions between ASFV and sncRNAs. Although comparatively modest changes to host sncRNA abundances were observed upon ASFV infection, we discovered and characterized a novel functional ASFV-encoded sncRNA. The results from this study add important insights into ASFV host-pathogen interactions. This knowledge may be exploited to develop more effective ASFV vaccines that take advantage of the sncRNA system.


Assuntos
Vírus da Febre Suína Africana/genética , Febre Suína Africana/genética , Genoma Viral , Interações Hospedeiro-Patógeno/genética , MicroRNAs/genética , Pequeno RNA não Traduzido/genética , RNA Viral/genética , Febre Suína Africana/metabolismo , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/metabolismo , Animais , Regulação da Expressão Gênica , Tamanho do Genoma , Tecido Linfoide , Macrófagos , MicroRNAs/classificação , MicroRNAs/metabolismo , Cultura Primária de Células , Pequeno RNA não Traduzido/classificação , Pequeno RNA não Traduzido/metabolismo , RNA Viral/classificação , RNA Viral/metabolismo , Transdução de Sinais , Sus scrofa , Suínos , Replicação Viral
13.
J Virol Methods ; 285: 113943, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32707050

RESUMO

Lumpy skin disease virus (LSDV) is a poxvirus that causes systemic disease in cattle, resulting in substantial economic loss to affected communities. LSDV is a rapidly emerging pathogen of growing global concern that recently spread from Africa and the Middle East into Europe and Asia, impacting the cattle population in these regions. An increase in research efforts into LSDV is required to address key knowledge gaps, however this is hampered by lack of suitable cell lines on which to propagate and study the virus. In this work we describe the replication and spread of LSDV on Madin-Darby bovine kidney (MDBK) cells, and the formation of foci-type poxvirus plaques by LSDV on MDBK cells. Methods utilising MDBK cells to quantify neutralising antibodies to LSDV, and to purify LSDV genomic DNA suitable for short read sequencing are described. These research methods broaden the tools available for LSDV researchers and will facilitate the gathering of evidence to underpin the development of LSD control and prevention programmes.


Assuntos
DNA Viral/isolamento & purificação , Doença Nodular Cutânea/virologia , Vírus da Doença Nodular Cutânea , Cultura de Vírus , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Bovinos , Cães , Vírus da Doença Nodular Cutânea/isolamento & purificação , Vírus da Doença Nodular Cutânea/fisiologia , Células Madin Darby de Rim Canino
14.
Front Vet Sci ; 7: 259, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32548130

RESUMO

Lumpy Skin Disease (LSD) is an emerging disease of cattle that causes substantial economic loss to affected regions. However, factors favouring transmission under field conditions and farm-level impacts are poorly quantified. This was a retrospective case-control study of cattle farms in Nakuru, Kenya to determine risk factors associated with lumpy skin disease and the farm-level economic impacts of an outbreak. Data were collected using questionnaires administered through personal interview. Collected data included herd sizes, age, and sex structures, breeds, sources of replacement stock, grazing systems, and costs (direct and indirect) incurred when LSD outbreaks occurred. Farm-level risk factors were examined through univariable and multivariable logistic regression and a final model built using backward stepwise regression and likelihood ratio tests. The factors associated with LSD outbreaks on univariable analysis included breed (exotic vs. indigenous, OR = 15.01, P = 0.007), source of replacement stock (outside the herd vs. within the herd, OR = 8.38, P < 0.001) and herd size (large [>10 cattle] vs. small [1-3 cattle], OR = 3.51, P = 0.029). In the multivariable logistic regression model, only breed (exotic vs. indigenous, OR = 14.87, 95% CI 1.94-113.97, P = 0.009) and source of replacement stock (outside the herd vs. within the herd OR = 8.7, 95% CI 2.80-27.0, P < 0.001) were associated with outbreaks. The economic impact was compared between farms keeping purely indigenous (n = 10) or exotic (n = 29) breeds of cattle which indicated mean farm-level losses of 12,431 KSH/123 USD and 76,297 KSH/755 USD, respectively. The mean farm-level losses from reduction in milk yield and mortality were estimated at 4,725 KSH/97 USD and 3,103 KSH/31USD for farms keeping indigenous breeds whilst for farms keeping exotic breeds the equivalent losses were 26,886 KSH/266 USD and 43,557 KSH/431 USD, respectively. The indirect losses from treatments and vaccinations were proportionately much higher on farms with indigenous breeds at 4,603 KSH/46 USD making up ~37% of the total costs compared to ~8% (5,855 KSH/58 USD per farm) of the total costs for farms with exotic breeds. These findings indicate that LSD caused significant economic losses at the farm level in Nakuru County. This justifies implementation of disease control measures including quarantine of cattle post-purchase and the need for effective vaccinations of susceptible cattle herds.

15.
Vet Pathol ; 57(3): 388-396, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32314676

RESUMO

Lumpy skin disease is a high-consequence disease in cattle caused by infection with the poxvirus lumpy skin disease virus (LSDV). The virus is endemic in most countries in Africa and an emerging threat to cattle populations in Europe and Asia. As LSDV spreads into new regions, it is important that signs of disease are recognized promptly by animal caregivers. This study describes the gross, microscopic, and ultrastructural changes that occur over time in cattle experimentally challenged with LSDV. Four calves were inoculated with wildtype LSDV and monitored for 19 to 21 days. At 7 days after inoculation, 2 of the 4 cattle developed multifocal cutaneous nodules characteristic of LSD. Some lesions displayed a targetoid appearance. Histologically, intercellular and intracellular edema was present in the epidermis of some nodules. Occasional intracytoplasmic inclusion bodies were identified in keratinocytes. More severe and consistent changes were present in the dermis, with marked histiocytic inflammation and necrotizing fibrinoid vasculitis of dermal vessels, particularly the deep dermal plexus. Chronic lesions consisted of full-thickness necrosis of the dermis and epidermis. Lesions in other body organs were not a major feature of LSD in this study, highlighting the strong cutaneous tropism of this virus. Immunohistochemistry and electron microscopy identified LSDV-infected histiocytes and fibroblasts in the skin nodules of affected cattle. This study highlights the noteworthy lesions of LSDV and how they develop over time.


Assuntos
Doença Nodular Cutânea , Vírus da Doença Nodular Cutânea/isolamento & purificação , Animais , Ásia/epidemiologia , Bovinos , Doenças dos Bovinos/virologia , Doenças Transmissíveis Emergentes/veterinária , Doenças Transmissíveis Emergentes/virologia , Dermatite/patologia , Dermatite/veterinária , Dermatite/virologia , Doenças Endêmicas/veterinária , Europa (Continente)/epidemiologia , Doença Nodular Cutânea/epidemiologia , Doença Nodular Cutânea/patologia , Doença Nodular Cutânea/transmissão , Doença Nodular Cutânea/virologia , Vírus da Doença Nodular Cutânea/patogenicidade , Vírus da Doença Nodular Cutânea/ultraestrutura , Pele/patologia , Pele/virologia , Vasculite/patologia , Vasculite/veterinária , Vasculite/virologia
16.
Transbound Emerg Dis ; 67(5): 2034-2049, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32181584

RESUMO

Mongolia is a large landlocked country in Central Asia and has one of the highest per capita livestock ratios in the world. During 2017, reported foot-and-mouth disease (FMD) outbreaks in Mongolia increased considerably, prompting widespread disease control measures. This study estimates the socio-economic impact of FMD and subsequent control measures on Mongolian herders. The analysis encompassed quantification of the impact on subsistence farmers' livelihoods and food security and estimation of the national-level gross losses due to reaction and expenditure during 2017. Data were collected from 112 herders across eight provinces that reported disease. Seventy of these herders had cases of FMD, while 42 did not have FMD in their animals but were within quarantine zones. Overall, 86/112 herders reported not drinking milk for a period of time and 38/112 reduced their meat consumption. Furthermore, 55 herders (49.1%) had to borrow money to buy food, medicines and/or pay bills or bank loans. Among herders with FMD cases, the median attack rate was 31.7%, 3.8% and 0.59% in cattle, sheep and goats, respectively, with important differences across provinces. Herders with clinical cases before the winter had higher odds of reporting a reduction in their meat consumption. National-level gross losses due to FMD in 2017 were estimated using government data. The estimate of gross economic loss was 18.4 billion Mongolian-tugriks (US$7.35 million) which equates to approximately 0.65% of the Mongolian GDP. The FMD outbreaks combined with current control measures have negatively impacted herders' livelihoods (including herders with and without cases of FMD) which are likely to reduce stakeholder advocacy. Possible strategies that could be employed to ameliorate the negative effects of the current control policy were identified. The findings and approach are relevant to other FMD endemic regions aiming to control the disease.

17.
Front Vet Sci ; 7: 8, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32083098

RESUMO

Lumpy skin disease (LSD), sheeppox (SP), and goatpox (GP) are contagious viral infections, affecting cattle (LSD), sheep and goats (SP and GP) with highly characteristic clinical signs affecting multiple body systems. All three diseases are widely reported to reduce meat, milk, wool and cashmere production although few studies have formally evaluated their economic impact on affected farms. This study aimed to estimate the economic impact and epidemiological parameters of LSD, SP, and GP among backyard and transhumance farmers in northeast Nigeria. A retrospective study was conducted on herds and flocks affected between August 2017 and January 2018 in Bauchi, Nigeria. Herds and flocks were diagnosed based on clinical signs and information was collected once the outbreak concluded using a standardized questionnaire. Data were collected from 99 farmers (87 backyard and 12 transhumance). The median incidence risk and fatality rate were 33 and 0% in cattle, 53 and 34 % in sheep; 50 and 33% in goats, respectively, with young stock having higher incidence risk and fatality rates than adults. Almost all farmers (94%) treated affected animals with antibiotics, spending a median of US$1.96 (min US$0.19-max US$27.5) per herd per day. Slaughtering or selling affected animals at low prices were common coping strategies. Farmers sold live cattle for 47% less than would have been sold if the animal was healthy, while sheep and goats were sold for 58 and 57% less, respectively. Milk production dropped 65% when cows were clinically affected and 35% after they recovered. Cattle lost a median of 10% of their live weight and sheep and goats lost 15%. Overall economic losses at farm level range from US$9.6 to US$6,340 depending on species affected and production system. Most of the farmers (72%) had not replaced all affected animals at the time of the study. Livestock markets were the most common place to sell affected animals and buy replacements, suggesting these are likely hubs for spreading infections. This study confirms the immediate and long-lasting impact of these diseases on subsistence farmers' livelihoods in North-East Nigeria and suggests potential mechanisms for targeted control.

18.
J Virol ; 93(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30381488

RESUMO

The PA-X protein of influenza A virus has roles in host cell shutoff and viral pathogenesis. While most strains are predicted to encode PA-X, strain-dependent variations in activity have been noted. We found that PA-X protein from the A/PR/8/34 (PR8) strain had significantly lower repressive activity against cellular gene expression than PA-X proteins from the avian strains A/turkey/England/50-92/91 (H5N1) (T/E) and A/chicken/Rostock/34 (H7N1). Loss of normal PA-X expression, either by mutation of the frameshift site or by truncating the X open reading frame (ORF), had little effect on the infectious virus titer of PR8 or PR8 7:1 reassortants with T/E segment 3 grown in embryonated hens' eggs. However, in both virus backgrounds, mutation of PA-X led to decreased embryo mortality and lower overall pathology, effects that were more pronounced in the PR8 strain than in the T/E reassortant, despite the low shutoff activity of the PR8 PA-X. Purified PA-X mutant virus particles displayed an increased ratio of hemagglutinin (HA) to nucleoprotein (NP) and M1 compared to values for their wild-type (WT) counterparts, suggesting altered virion composition. When the PA-X gene was mutated in the background of poorly growing PR8 6:2 vaccine reassortant analogues containing the HA and neuraminidase (NA) segments from H1N1 2009 pandemic viruses or from an avian H7N3 strain, HA yield increased up to 2-fold. This suggests that the PR8 PA-X protein may harbor a function unrelated to host cell shutoff and that disruption of the PA-X gene has the potential to improve the HA yield of vaccine viruses.IMPORTANCE Influenza A virus is a widespread pathogen that affects both humans and a variety of animal species, causing regular epidemics and sporadic pandemics, with major public health and economic consequences. A better understanding of virus biology is therefore important. The primary control measure is vaccination, which for humans mostly relies on antigens produced in eggs from PR8-based viruses bearing the glycoprotein genes of interest. However, not all reassortants replicate well enough to supply sufficient virus antigen for demand. The significance of our research lies in identifying that mutation of the PA-X gene in the PR8 strain of virus can improve antigen yield, potentially by decreasing the pathogenicity of the virus in embryonated eggs.


Assuntos
Vírus da Influenza A/patogenicidade , Mutação , Vírus Reordenados/patogenicidade , Proteínas Repressoras/genética , Proteínas não Estruturais Virais/genética , Animais , Embrião de Galinha , Galinhas , Cães , Células HEK293 , Humanos , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Vírus da Influenza A Subtipo H7N1/genética , Vírus da Influenza A Subtipo H7N1/patogenicidade , Vírus da Influenza A/genética , Influenza Aviária/virologia , Células Madin Darby de Rim Canino , Vírus Reordenados/genética
19.
Virology ; 526: 155-164, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30390564

RESUMO

IFNγ is a key regulator of inflammatory responses but its role in influenza A virus (IAV) pathogenesis is unclear. Our studies show that infection of mice lacking the IFNγ receptor (IFNγR-/-) at a dose which caused severe disease in wild type 129 Sv/Ev (WT) mice resulted in milder clinical symptoms and significantly lower lung virus titers by 6 days post-infection (dpi). Viral spread was reduced in IFNγR-/- lungs at 2 and 4 dpi. Levels of inflammatory cytokines and chemokines were lower in IFNγR-/- mice at 2 dpi and there was less infiltration of monocyte/macrophage lineage cells than in WT mice. There was no difference in CD4+ and CD8+ T cells and alveolar macrophages in the bronchoalveolar lavage fluid (BALF) at 2 and 4 dpi but by 4 dpi IFNγR-/- mice had significantly higher percentages of neutrophils. Our data strongly suggest that IAV can use the inflammatory response to promote viral spread.


Assuntos
Vírus da Influenza A/patogenicidade , Infecções por Orthomyxoviridae/fisiopatologia , Receptores de Interferon/genética , Transdução de Sinais , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Macrófagos/imunologia , Camundongos , Camundongos Transgênicos , Neutrófilos/imunologia , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Transdução de Sinais/genética , Carga Viral
20.
Sci Rep ; 8(1): 16956, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30446704

RESUMO

The re-emergence of poxviral zoonotic infections and the threat of bioterrorism emphasise the demand for effective antipoxvirus therapies. Here, we show that carbenoxolone, a pharmacological inhibitor of gap junction function and a compound widely used in cell culture, is capable of hindering the replication of Vaccinia virus, the prototypical poxvirus, in a gap junction-independent manner in a human keratinocyte cell line. Viral protein synthesis occurs in the presence of carbenoxolone but infectious virion formation is minimal, indicating that carbenoxolone blocks viral morphogenesis. Initial viability tests suggested that carbenoxolone was not toxic to cells. However, electron microscopic analysis of carbenoxolone treated cells revealed that it alters the cellular endomembrane system. This widespread ultrastructural damage prevents Vaccinia virus virion assembly. These results strengthen the need for thorough characterisation of the effects of antiviral compounds on the cellular ultrastructure.


Assuntos
Carbenoxolona/farmacologia , Queratinócitos/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Antiulcerosos/farmacologia , Antivirais/farmacologia , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/ultraestrutura , Membrana Celular/virologia , Sobrevivência Celular/efeitos dos fármacos , Humanos , Queratinócitos/citologia , Queratinócitos/virologia , Microscopia Eletrônica de Transmissão , Vírus Vaccinia/efeitos dos fármacos , Vírus Vaccinia/fisiologia , Vírion/efeitos dos fármacos , Vírion/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...